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Abstract

In the paper we propose a series of convolution identities for the sequence of Catalan numbers.
The proofs of two of them are provided and the other identities are proposed as conjectures. We
include a simple Maple code to generate and confirm the identities.
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1 Introduction

Probably the most prominent among the special integers that arise in combinatorial contexts
are the binomial coefficients (nm). In this paper we discuss an important sequence called Catalan
numbers. The sequence of Catalan numbers Cn was described in the 18th century by Leonhard
Euler. The sequence is named after the Belgian mathematician Eug‘ene Charles Catalan.

The nth Catalan number is given directly in terms of binomial coefficients as follows,

Cn =
1

n+ 1

(
2n

n

)
=

(2n)!

(n+ 1)!n!
for n ≥ 0. (1)

The first Catalan numbers for n = 0, 1, 2, 3, 4, 5, ... are

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, ...

For detailed information, please refer to the monograph [2].

A recursive definition of Cn have been given by L.Euler in 1761 as follows,

C0 = 1, Cn =
4n− 2

n+ 1
Cn−1, n ≥ 1.

Although Euler and Catalan are recognised for discovering the Catalan numbers’ sequence,
some believe that a Chinesemathematician namedAntuMing (1692–1763)was the pioneer. In the
1730’s, he focused on the geometric meaning of the Catalan number. He worked at the Qing court
in China as an astronomer, mathematician, and topographic scientist. He is called Minggatu (full
name Sharabiin Myangat), Ming Antu (Chinese name) and Jing An (courtesy name). Ming Antu
wrote a book Quick Methods for Accurate Values of Circle Segments, which contained several
trigonometric identities and power series, some concerning Catalan numbers.

Ming Antu also obtained the recurrence formula

C1 = 1, C2 = 2, Cn+1 =

n∑
s=0

(−1)s
(
n+ 1− s
s+ 1

)
Cn−s.

He seems to have no hint of a combinatorial interpretation of Catalan numbers.

Ming Antu’s book was published only in 1839, and the connection to Catalan numbers was
observed by Luo Jianjin in 1988 (see [3, 4] and for further information also see [11] (Appendix
B)).

Eugene Charles Catalan (1814–1894) “rediscovered” the Catalan Numbers while exploring
well-formed sequences of parentheses in 1838. He was a Belgian mathematician who stated the
famous Catalan conjecture. Although this set of numbers is named after him, he was not the first
to discover these numbers.
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The Catalan sequence also wasworked out by Leonhard Euler(1707-1783), whowas interested
in the number of differentways of dividing a polygon into triangles. L. Euler reviewed this number
set related to the triangulations of convex polygons. He established a recursive formula in 1761 and
collaborated with Hungarian mathematician, Johann von Segner (1704-1777), to derive a second
order recurrence relation.

Gabriel Lame (1795-1870), was a French mathematician who used Euler’s recursive formulae
to find an explicit formula in 1838.

In spite of a numerous generalizations and recursive formulae, books written, papers pub-
lished and applications given the sequence of Catalan numbers is still of scientists’ great interest
(see [6, 7, 12] and others).

In this paperwe propose a series of convolution identities for the sequence of Catalan numbers.
The identities cameout froman intension to create isomorphism criteria for some classes of Leibniz
algebras. The identities have been used to create such isomorphism criteria for low-dimensional
filiform Leibniz algebras in [9] (t = 5, 6 and t = 7 cases), [10] (t = 8) and [5] (t = 9, 10). All these
cases the corresponding identities were proven by computations. First time in the most general
form the identities were exhibited in [8]. Since then we received a lot of requests to provide the
proofs of the identities. In fact, a hint was given in [8] to use a combination of properties of the
binomials and Catalan numbers. To prove the identities for k = 1 and k = 2we used the so-called
“halving trick”.

The organization of the paper is as follows. In Section 2 we recall some statements and iden-
tities on the binomial coefficients and Catalan numbers. The convolution identities for Catalan
numbers are exhibited in Section 3. In APPENDIX section of the paper we include a simple Maple
code to generate and verify the identities proposed for integers t ≥ 3 and 1 ≤ k ≤ t− 3 .

2 Some auxiliary identities

The purpose of this section is to recall some identities on the sequence of Catalan Numbers
and Binomial Coefficients (without claiming any originality) to use them later, they can be found
in the literature (see, for example, [1, 2, 11]). These are included here in order to make the paper
a self-contained.

The definition of the binomial coefficients are given as follows(
n

m

)
=

n!

m!(n−m)!
=
n(n− 1)(n− 2) . . . (n− (m− 1))

m!
=
n(n− 1)(n− 2) . . . (m+ 1)

(n−m)!
. (2)

The definition (2.1) supposes that n andm to be positive, but due to numerous applications of(
n
m

) in mathematics and beyond one has to define it for negative numbers and fractional numbers
as well.

Binomial Coefficients for a factional number p
q as an upper index and an integerm as a lower

index are defined as follows( p
q

m

)
=

p
q (

p
q − 1)(pq − 2) . . . (pq − (m− 1))

m!
.
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Proposition 2.1. The following relation between “halving” and Catalan numbers holds true( 1
2

s

)
= (−1)s−1 2

4s
Cs−1.

Proof.

( 1
2
s

)
=

1
2 (

1
2−1)(

1
2−2)...(

1
2−(s−1))

s!

= (−1)s−1·1·(2·1−1)·(2·2−1)·...·[(2·(s−1)−1)
2ss!

= (−1)s−1 1·3·5·...·(2s−3)
2ss!

= (−1)s−1 (2s−2)!
2ss![2·4·6·...·(2s−2)]

= (−1)s−1 (2s−2)!
2ss!2s−1(s−1)!

= (−1)s−1 (2s−2)!
22s−1s!(s−1)!

= (−1)s−1

22s−1s

(
2s−2
s−1

)
= (−1)s−1

22s−1 Cs−1
= (−1)s−1 2

4sCs−1.

The definition of the binomial coefficients for a negative upper index is given as follows(
−n
m

)
=
−n(−n− 1)(−n− 2) . . . (−n−m+ 1)

m!
= (−1)mn(n+ 1)(n+ 2) . . . (n+m− 1)

m!
. (3)

Accordingly for a factional number −p
q as an upper index and an integerm as a lower index it

becomes(
−p

q

m

)
=
−p(−p− q)(−p− 2q) · · · [−p− (m− 1)q

qmm!
= (−1)m p(p+ q)(p+ 2q) · · · [p+ (m− 1)q

qmm!
.

Proposition 2.2. One has the following identity(
− 1

2

s

)
=

(−1)s

4s
(1 + s)Cs.

Proof. Indeed,(− 1
2
s

)
= (−1)s 1·(1+2·1)·(1+2·2)·...·[1+2·(s−1)]

2ss!

= (−1)s 1·3·5·...·(2s−1)
2ss!

= (−1)s (2s−1)!
2ss![2·4·6·...·(2s−2)]

= (−1)s (2s−1)!
2ss!2s−1(s−1)!

= (−1)s (2s)!
22ss!s!

= (−1)s
22s

(
2s
s

)
= (−1)s

4s (1 + s)Cs.

The following recurrent formula is proven by using generating function

C(x) =

∞∑
s=0

Csx
s = C0 + C1x+ C2x

2 + C3x
3 + ...

for Catalan sequence {C0, C1, C2, ...}.
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Proposition 2.3. (Segner’s recurrence relation) For any natural number n = 0, 1, 2, ... one has

n∑
s=0

CsCn−s = Cn+1. (4)

Proof. Consider

C(x)2 == 1 + (C0C1 + C1C0)x+ (C0C2 + C1C1 + C2C0)x
2 + ... =

∞∑
n=0

(
n∑

s=0

CsCn−s

)
xs.

Let A(x) = d
dx [xC(x)]. Then

A(x) =

∞∑
s=0

(
2s

s

)
xs =

1√
1− 4x

.

Therefore,
xC(x) =

∫ x

0

A(t)dt =

∫ x

0

1√
1− 4t

dt =
1

2
(1−

√
1− 4x.

Hence,
C(x) =

1−
√
1− 4x

2x

and
C(x)2 =

1−
√
1− 4x

2x2
− 1

x
=
C(x)− 1

x
=

1

x

∞∑
s=0

Csx
s =

∞∑
s=0

Cs+1x
s.

Thus,
Cn+1 =

n∑
s=0

CsCn−s.

Proposition 2.4. For the sequence of Catalan numbers the following identity takes place

n∑
s=0

sCsCn−s =
n

2
Cn+1, where n = 0, 1, 2, ... (5)

Proof.
n∑

s=0

sCsCn−s =

n∑
r=0

(n− r)CrCn−r = n

n∑
r=0

CrCn−r −
n∑

r=0

rCrCn−r.

Therefore,
2

n∑
s=0

sCsCn−s = n

n∑
r=0

CrCn−r = nCn+1.

Thus,
n∑

s=0

sCsCn−s =
n

2
Cn+1.
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We also make use the following well-known Chu–Vandermonde Convolution formula (see
[2]):
Proposition 2.5. For rational α, β and a positive integer n the following holds true

n∑
s=0

(
α

s

)(
β

n− s

)
=

(
α+ β

n

)
.

3 The identities

In this section we set up two convolution identities for Catalan numbers and give proofs of
them.
Theorem 3.1. For Catalan numbers and for a natural number t, (t ≥ 3) the following identities hold true

a) A(1) :=
t−3∑
s=1

(
s+ 1
s

)
CsCF (1) =

(
t− 3
1

)
Ct−2;

b) A(2) :=
t−3∑
s=1

(
s+1
s

)(
s−1
1

)
CsCt−s−2 −

t−3∑
s=1

(
s+1
s−1
)
Cs

t−s−3∑
p=1

CpCt−p−s−2 =
(
t−3
2

)
Ct−2.

Proof. • Part a). We give two proofs of the identity. The first proving is based on the classical
identity (4) for Catalan numbers alongwith the identity (5) and the second one is to demon-
strate the proving technique applied in the proof of the convolution identity given in Part b).

∗ A(1) :=
t−3∑
s=1

(
s+ 1
s

)
CsCt−s−2 =

t−2∑
s=0

(s+ 1)CsCt−s−2 − Ct−2 − (t− 1)Ct−2

=
t−2∑
s=0

sCsCt−s−2 +
t−2∑
s=0

CsCt−s−2 − tCt−2 = t−2
2 Ct−1 + Ct−1 − tCt−2 = tCt−1 − tCt−2

= t 2(2t−3)t Ct−2 − tCt−2 = (t− 3)Ct−2 =
(
t−3
1

)
Ct−2.

∗ A(1) :=
t−3∑
s=1

(
s+ 1
s

)
CsCF (1) =

t−3∑
s=1

(s+ 1)CsCt−s−2

=
t−3∑
s=1

(−1)s4s
(− 1

2
s

)
(−1)t−s−222(t−1−s)−1

( 1
2

t−s−1
)

= (−1)t−222t−3
(

t−1∑
s=0

(− 1
2
s

)( 1
2

t−s−1
)
−
(− 1

2
0

)( 1
2

t−1
)
−
(− 1

2
t−2
)( 1

2
1

)
−
(− 1

2
t−1
)( 1

2
0

))
= (−1)t−2 4t

8

(
− (−1)t−28

4t Ct−2 − (−1)t−28(t−1)
4t Ct−2 +

(−1)t−24t
4t Ct−1

)
= −tCt−2 + (2t− 3)Ct−2 = (t− 3)Ct−2 =

(
t− 3
1

)
Ct−2.

• Part b). A(2) :=
t−3∑
s=1

(
s+1
s

)(
s−1
1

)
CsCt−s−2 −

t−3∑
s=1

(
s+1
s−1
)
Cs

t−s−3∑
p=1

CpCt−p−s−2

=
t−3∑
s=1

(s+ 1)(s− 1)CsCt−s−2 − 1
2

t−3∑
s=1

(s+ 1)sCs(Ct−s−1 − 2Ct−s−2).
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First we make use of Propositions 2.1 to obtain
A(2) :=

t−3∑
s=1

(−1)s4s
(− 1

2
s

)
[(t− 2)Ct−s−2 − (t− s− 1)Ct−s−2]

− 1
2

t−3∑
s=1

(−1)s4s
(− 1

2
s

)
[tCt−s−1 − (t− s)Ct−s−1]

+
t−3∑
s=1

(−1)s4s
(− 1

2
s

)
[(t− 1)Ct−s−2 − (t− s− 1)Ct−s−2].

Then due to Proposition 2.2 continuing we get
A(2) :=

t−3∑
s=1

(−1)s4s
(− 1

2
s

)
(t− 2) 4

t−s−1

2 (−1)t−s−2
( 1

2
t−s−1

)
−

t−3∑
s=1

(−1)s4s
(− 1

2
s

)
(−1)t−s−24t−s−2

( − 1
2

t−s−2
)

− 1
2

t−3∑
s=1

(−1)s4s
(− 1

2
s

)
t 4

t−s

2 (−1)t−s−1
( 1

2
t−s
)
+ 1

2

t−3∑
s=1

(−1)s4s
(− 1

2
s

)
(−1)t−s−14t−s−1

( − 1
2

t−s−1
)

+
t−3∑
s=1

(−1)s4s
(− 1

2
s

)
(t− 1) 4

t−s−1

2 (−1)t−s−2
( 1

2
t−s−1

)
−

t−3∑
s=1

(−1)s4s
(− 1

2
s

)
(−1)t−s−24t−s−2

( − 1
2

t−s−2
)

= 4t−1

2 (−1)t−2(t− 2)
t−3∑
s=1

(− 1
2
s

)( 1
2

t−s−1
)
− 4t−2(−1)t−2

t−3∑
s=1

(− 1
2
s

)( − 1
2

t−s−2
)

−4t−1(−1)t−1t
t−3∑
s=1

(− 1
2
s

)( 1
2

t−s
)
+ 4t−1

2 (−1)t−1
t−3∑
s=1

(− 1
2
s

)( − 1
2

t−s−1
)

+ 4t−1

2 (−1)t−2(t− 1)
t−3∑
s=1

(− 1
2
s

)( 1
2

t−s−1
)
− 4t−2(−1)t−2

t−3∑
s=1

(− 1
2
s

)( − 1
2

t−s−2
)

= 4t−1

2 (−1)t−2(t− 2)

[
t−1∑
s=0

(− 1
2
s

)( 1
2

t−s−1
)
−
(− 1

2
0

)( 1
2

t−1
)
−
(− 1

2
t−2
)( 1

2
1

)
−
(− 1

2
t−1
)( 1

2
0

)]
−4t−2(−1)t−2

[
t−2∑
s=0

(− 1
2
s

)( − 1
2

t−s−2
)
−
(− 1

2
0

)(− 1
2

t−2
)
−
(− 1

2
t−2
)(− 1

2
0

)]
−4t−1(−1)t−1t

[
t∑

s=0

(− 1
2
s

)( 1
2

t−s
)
−
(− 1

2
0

)( 1
2
t

)
−
(− 1

2
t−2
)( 1

2
2

)
−
(− 1

2
t−1
)( 1

2
1

)
−
(− 1

2
t

)( 1
2
0

)]
+ 4t−1

2 (−1)t−1
[
t−1∑
s=0

(− 1
2
s

)( − 1
2

t−s−1
)
−
(− 1

2
0

)(− 1
2

t−1
)
−
(− 1

2
t−2
)(− 1

2
1

)
−
(− 1

2
t−1
)(− 1

2
0

)]
+ 4t−1

2 (−1)t−2(t− 1)

[
t−1∑
s=0

(− 1
2
s

)( 1
2

t−s−1
)
−
(− 1

2
0

)( 1
2

t−1
)
−
(− 1

2
t−2
)( 1

2
1

)
−
(− 1

2
t−1
)( 1

2
0

)]
−4t−2(−1)t−2

[
t−2∑
s=0

(− 1
2
s

)( − 1
2

t−s−2
)
−
(− 1

2
0

)(− 1
2

t−2
)
−
(− 1

2
t−2
)(− 1

2
0

)].
Now we apply the Chu–Vandermonde Convolution formula (Proposition 2.5) and get
A(2) := 4t−1

2 (−1)t−2(t− 2)
[
−
( 1

2
t−1
)
−
(− 1

2
t−2
)
1
2 −

(− 1
2

t−1
)]
− 4t−2(−1)t−2

[
(−1)t−2 − 2

(− 1
2

t−2
)]

−4t−1(−1)t−1t
[
−
( 1

2
t

)
−
(− 1

2
t−2
) (
− 1

8

)
−
(− 1

2
t−1
)
1
2 −

(− 1
2
t

)]
+ 4t−1

2 (−1)t−1
[
(−1)t−1 −

(− 1
2

t−1
)
−
(− 1

2
t−2
) (
− 1

2

)
−
(− 1

2
t−1
)]

+ 4t−1

2 (−1)t−2(t− 1)
[
−
( 1

2
t−1
)
−
(− 1

2
t−2
)
1
2 −

(− 1
2

t−1
)]
− 4t−2(−1)t−2

[
(−1)t−2 − 2

(− 1
2

t−2
)].
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Finally, converting the binomials into Catalan numbers by using Propositions 2.1 and 2.2 we
derive
A(2) := 4t−1

2 (−1)t−2(t− 2)
[
−(−1)t−2 2

4t−1Ct−2 − (−1)t−2

2·4t−2 (t− 1)Ct−2 − (−1)t−1

4t−1 tCt−1

]
−4t−2(−1)t−2

[
(−1)t−2 − 2 (−1)t−2

4t−2 (t− 1)Ct−2

]
− 4t−1(−1)t−1t

[
−(−1)t−1 2

4tCt−1

− (−1)t−2

4t−2 (t− 1)Ct−2
(
− 1

8

)
− (−1)t−1

4t−1 tCt−1
1
2 −

(−1)t
4t (t+ 1)Ct

]
+ 4t−2

2 (−1)t−1
[
(−1)t−1 − 2 (−1)t−1

4t−1 tCt−1 − (−1)t−2

4t−2 (t− 1)Ct−2
(
− 1

2

)]
+ 4t−1

2 (−1)t−2(t− 1)
[
−(−1)t−2 2

4t−1Ct−2 − (−1)t−2

4t−2 (t− 1)Ct−2
1
2 −

(−1)t−1

4t−1 tCt−1

]
−4t−2(−1)t−2

[
(−1)t−2 − 2 (−1)t−2

4t−2 (t− 1)Ct−2

]
= −(t− 2)Ct−2 − (t− 2)(t− 1)Ct−2 +

t(t−2)
2 Ct−1 + 2(t− 1)Ct−2 +

t
2Ct−1

+ t(t−1)
2 Ct−2 +

t2

2 Ct−1 − t(t+1)
4 Ct − tCt−1 − 2(t− 1)Ct−2

−(t− 1)2Ct−2 +
t(t−1)

2 Ct−1 + 2(t− 1)Ct−2

=
[
−(t− 2)− (t− 2)(t− 1) + 2(t− 1) + t(t−1)

2 − (t− 1)2
]
Ct−2

+
[
t(t−2)

2 + t
2 + t2

2 − t+
t(t−1)

2

]
Ct−1 − t(t+1)

4 Ct

= −3t2+11t−6
2 Ct−2 +

t(3t−4)
2 Ct−1 − t(t+1)

4 Ct

= −3t2+11t−6
2 Ct−2 +

t(3t−4)
2

2(2t−3)
t Ct−2 − t(t+1)

4
4(2t−1)(2t−3)

t(t+1) Ct−2

= −3t2+11t−6+4t2−18t+18
2 Ct−2 = t2−7t+12

2 Ct−2 = (t−3)(t−4)
2 Ct−2 =

(
t−3
2

)
Ct−2.

3.1 IR Conjecture

In this section we propose generalizations of the identities given in Theorem 3.1. The identities
have been confirmednumerically inMaple (correspondingMapleCode is provided inAPPENDIX
section). To simplify the view of the convolution identities we introduce the following function:
F (n) = t− 2−

n∑
i=1

si, for a natural number n, where t is a natural number (t ≥ 3).

Theorem 3.2. (Theorem-Conjecture) For any positive integers t (t ≥ 3) the following convolution
identities take place

A(3)=
t−3∑
s1=1

(
s1+1
s1

)(
s1−1
2

)
Cs1CF (1)

−
t−3∑
s1=1

(
s1+1
s1−1

)(
s1−1
1

)
Cs1

F (1)−1∑
s2=1

Cs2CF (2)

+
t−3∑
s1=2

(
s1+1
s1−2

)
Cs1

F (1)−1∑
s2=1

Cs2

F (2)−1∑
s3=1

Cs3CF (3) =
(
t−3
3

)
Ct−2;
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A(4)=
t−3∑
s1=1

(
s1+1
s1

)(
s1−1
3

)
Cs1CF (1)

−
t−3∑
s1=1

(
s1+1
s1−1

)(
s1−1
2

)
Cs1

F (1)−1∑
s2=1

Cs2CF (2)

+
t−3∑
s1=2

(
s1+1
s1−2

)(
s1−1
1

)
Cs1

F (1)−1∑
s2=1

Cs2

F (2)−1∑
s3=1

Cs3CF (3)

−
t−3∑
s1=3

(
s1+1
s1−3

)
Cs1

F (1)−1∑
s2=1

Cs2

F (2)−1∑
s3=1

Cs3

F (3)−1∑
s4=1

Cs4CF (4) =
(
t−3
4

)
Ct−2;

A(5)=
t−3∑
s1=1

(
s1+1
s1

)(
s1−1
4

)
Cs1CF (1)

−
t−3∑
s1=1

(
s1+1
s1−1

)(
s1−1
3

)
Cs1

F (1)−1∑
s2=1

Cs2CF (2)

+
t−3∑
s1=2

(
s1+1
s1−2

)(
s1−1
2

)
Cs1

F (1)−1∑
s2=1

Cs2

F (2)−1∑
s3=1

Cs3CF (3)

−
t−3∑
s1=3

(
s1+1
s1−3

)(
s1−1
1

)
Cs1

F (1)−1∑
s2=1

Cs2

F (2)−1∑
s3=1

Cs3

F (3)−1∑
s4=1

Cs4CF (4)

+
t−3∑
s1=4

(
s1+1
s1−4

)
Cs1

F (1)−1∑
s2=1

Cs2

F (2)−1∑
s3=1

Cs3

F (3)−1∑
s4=1

Cs4

F (4)−1∑
s5=1

Cs5CF (5) =
(
t−3
5

)
Ct−2.

In general, for any positive integers t (t ≥ 3) and k (1 ≤ k ≤ t−3) the following convolution identities
hold true

A(k)=
t−3∑
s1=1

(
s1+1
s1

)(
s1−1
k−1

)
Cs1CF (1)

−
t−3∑
s1=1

(
s1+1
s1−1

)(
s1−1
k−2

)
Cs1

F (1)−1∑
s2=1

Cs2CF (2)

+
t−3∑
s1=2

(
s1+1
s1−2

)(
s1−1
k−3

)
Cs1

F (1)−1∑
s2=1

Cs2

F (2)−1∑
s3=1

Cs3CF (3)

−
t−3∑
s1=3

(
s1+1
s1−3

)(
s1−1
k−4

)
Cs1

F (1)−1∑
s2=1

Cs2

F (2)−1∑
s3=1

Cs3

F (4)−1∑
s4=1

Cs4CF (4)

+...+ (−1)r
t−3∑
s1=r

(
s1+1
s1−r

)(
s1−1

k−(r+1)

)
Cs1

F (1)−1∑
s2=1

Cs2 · · ·
F (r)−1∑
sr+1=1

Csr+1
CF (r+1)

+...+ (−1)k−2
t−3∑

s1=k−2

(
s1+1

s1−(k−2)
)(

s1−1
1

)
Cs1

F (1)−1∑
s2=1

Cs2 · · ·
F (k−2)−1∑
sk−1=1

Csk−1
CF (k−1)

+(−1)k−1
t−3∑

s1=k−1

(
s1+1

s1−(k−1)
)
Cs1

F (1)−1∑
s2=1

Cs2 · · ·
F (k−2)−1∑
sk−1=1

Ck−1
F (k−1)−1∑

sk=1
CskCF (k) =

(
t−3
k

)
Ct−2.
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4 Conclusions

The authors believe that there is a well-favoured proofs of the identities exhibited in the paper.
By publishing this paper we would like to draw an attention of the experts in combinatorics and
expect more shorter proofs of the identities conjectured.
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A APPENDIX

In this section we provide a Maple code to verify the identities (as a sample it is chosen t = 13
and k = 4).

Maple Program:

Synopsis:

1. To verify the identities:
• Choose t;
• Generate Catalan numbers Cs, s = 1, 2, ..., t− 3;
• Choose k, where k < t− 3;
• Generate the identities.

2. Output is the confirmation.

Procedure:
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